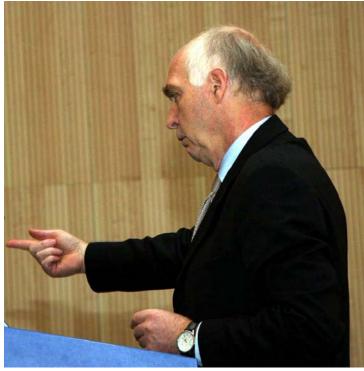
Session summary 3-1, 3-2

Dr. Attila ASZÓDI

Director, Head of Department Budapest University of Technology and Economics (BME) Institute of Nuclear Techniques (NTI), Hungary


International Conference on Opportunities and Challenges for Water Cooled Nuclear Power Plants in the 21st Century

30 October 2009, IAEA Headquarters in Vienna

Common message from Session 3-1 and 3-2

- Improve safety
- But do it economically
 - Decrease construction costs (optimize old technical solutions)
 - Increase building speed (prefabrication, modules, large crane)
 - Apply modern information technology and 3D simulations
 - Improve plant availability
 - Increase plant lifetime (up to 80 years)
- Develop harmonization (industrial codes, recommendations, practice)
- No revolution, but real improvement. Good management, optimized solutions can be observed.

- 3S01 <u>P. Berbey</u> (France): Status and Near-Term Works on the EUR Document, Possible Use by Third Parties
 - Document written by investors and operators to protect investments.
 - It is not a regulatory document.
 - Expected designs: advanced LWRs (Gen3) only.

- 3S02 <u>N. Popov</u> (Canada): The Enhanced CANDU 6 Reactor - Generation III CANDU Medium Size Global Reactor
 - Detailed description of Enhanced CANDU 6 Reactor was given.
 - Safety features, constructability and fuel cycle options.
 - 60 years design lifetime.
 After 30 years the key components have to be replaced.

- 3S03 <u>A. Kumar</u> (India): On the Physics Design of Advanced Heavy Water Reactor (AHWR)
 - AHWR: 300 MWe, vertical, pressure tube type reactor cooled by boiling light water, moderated by heavy water.
 - Effective utilization of thorium in closed fuel cycle with almost two-third of power derived from Thorium/ U-233
 - Core averaged discharged burnup increased from 20,000 MWd/te to 36,000 MWd/te

 Extensive modification of fuel cluster to improve neutron economy and decrease void reactivity coefficient

- 3S04 J. Kawahata (Japan): Advanced Construction Technologies and Further Evolution Towards New Build NPP Projects
- An integrated engineering system for construction projects was presented.
- Intensive use of 3D CAD simulations during preparation and run of commissioning.
- Yard / crane engineering the crane movement and operation is also simulated.
- Paperless work.
- Construction defects are avoided by using simulations.

- 3S08 <u>L. Burgazzi</u> (Italy): Open Issues Associated with Passive Safety Systems Reliability Assessment
 - Definition and classification of passive systems.
 - Safety and reliability analysis methods for passive systems.

Session 3-2: Design and Construction of Advanced Water Cooled Reactors (M1) Chairperson: J-P. Bouard, IEC, France

- 3S05 <u>P. Gaio</u> (USA): AP1000: The PWR Revisited
 - Good illustration of passive concept as implemented by Westinghouse
 - RPV is the same like in Doel 4 / Tihange 3.
 - Passive safety systems relying on natural phenomena.
 - In the first 72 hours no need for operator interaction.

- 3S06 <u>V. Kosogorov</u> (Russian Federation): Evolution of VVER Technology towards NPP-2006 Project
 - Good example of high level management of a nuclear fleet
 - The design of NPP-2006 was described
 - Comparison of
 "Novovoronezh-II"
 and "Leningrad-II"
 projects was given

- 3S07 <u>T. Yamamoto</u> (Japan): Development of Next-Generation Light Water Reactor in Japan
 - Development of next-generation LWR started April 2008 with consortium of consisting of three major NPP vendors, utilities and the Institute of Applied Energy.
 - Basic design and major R&D will be completed in 2015 and the 1st commercial operation will start around 2030.
 - Main goals:
 - Capacity factor up to 97%
 - Spent fuel discharge reduced by 30~40%
 - Eighty-year plant lifetime
 - Plant design independent from site specific (seismic) conditions

A. Aszodi, BME NTI, Budapest

- 3S09 <u>H.G. Kim</u> (Republic of Korea): Design
 Characteristics of the Advanced Power Reactor
 1400
 - Really good example of an evolutionary LWR, with good technical presentation
 - Overview of APR1400 design (4000 MWth, 2 loop PWR).
 - First commercial NPPs of APR1400 (Shin-Kori 3&4) are under commissioning.
 Commercial operation is planed in 2013.

